Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Vaccine ; 41(29): 4212-4219, 2023 06 29.
Article in English | MEDLINE | ID: covidwho-20230836

ABSTRACT

We evaluated relative vaccine effectiveness (rVE) of 4- vs. 3-dose mRNA-1273 against SARS-CoV-2 infection, and COVID-19 hospitalization and death in immunocompetent adults aged ≥50 years at Kaiser Permanente Southern California. We included 178,492 individuals who received a fourth dose of mRNA-1273, and 178,492 randomly selected 3-dose recipients who were matched to 4-dose recipients by age, sex, race/ethnicity, and third dose date. Adjusted 4- vs. 3-dose rVE against SARS-CoV-2 infection, COVID-19 hospitalization, and COVID-19 hospitalization death were 25.9 % (23.5 %, 28.2 %), 67.3 % (58.7 %, 74.1 %), and 72.5 % (-35.9 %, 95.2 %), respectively. Adjusted rVE against SARS-CoV-2 infection ranged between 19.8 % and 39.1 % across subgroups. Adjusted rVE against SARS-CoV-2 infection and COVID-19 hospitalization decreased 2-4 months after the fourth dose. Four mRNA-1273 doses provided significant protection against COVID-19 outcomes compared with 3 doses, consistent in various subgroups of demographic and clinical characteristics, although rVE varied and waned over time.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , United States/epidemiology , Aged , COVID-19/prevention & control , SARS-CoV-2 , Cohort Studies , Ethnicity
2.
Vaccine ; 41(24): 3636-3646, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2309374

ABSTRACT

BACKGROUND: Data on the effectiveness of the 3-dose mRNA-1273 primary series are limited, particularly in comparison to 2 doses. Given suboptimal COVID-19 vaccine uptake among immunocompromised populations, it is important to monitor the effectiveness of fewer than the recommended doses in this population. METHODS: We conducted a matched cohort study at Kaiser Permanente Southern California to evaluate the relative vaccine effectiveness (rVE) of the 3-dose series vs 2 doses of mRNA-1273 in preventing SARS-CoV-2 infection and severe COVID-19 outcomes among immunocompromised individuals. RESULTS: We included 21,942 3-dose recipients who were 1:1 matched with randomly selected 2-dose recipients (third doses accrued 08/12/2021-12/31/2021, with follow-up through 01/31/2022). Adjusted rVE of 3 vs 2 doses of mRNA-1273 against SARS-CoV-2 infection, COVID-19 hospitalization, and COVID-19 hospital death were 55.0 % (95 % CI: 50.8-58.9 %), 83.0 % (75.4-88.3 %), and 87.1 % (30.6-97.6 %), respectively. CONCLUSION: Three doses of mRNA-1273 were associated with a significantly higher rVE against SARS-CoV-2 infection and severe outcomes, compared to 2 doses. These findings were consistent across subgroups of demographic and clinical characteristics, and mostly consistent across subgroups of immunocompromising conditions. Our study highlights the importance of completing the 3-dose series for immunocompromised populations.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Prospective Studies , Vaccine Efficacy , SARS-CoV-2
3.
Clin Infect Dis ; 2022 Sep 22.
Article in English | MEDLINE | ID: covidwho-2240738

ABSTRACT

BACKGROUND: A prospective cohort study at Kaiser Permanente Southern California was conducted to evaluate the relative vaccine effectiveness (rVE) of a booster-dose vs. 2-dose primary series of mRNA-1273 in immunocompetent individuals during periods of Delta and Omicron predominance. METHODS: Immunocompetent adults who received a booster dose of mRNA-1273 from October through December 2021 were matched 1:1 to randomly selected 2-dose mRNA-1273 recipients by age, sex, race/ethnicity, and second dose date, and followed up through January 2022. Cox proportional hazards models were used to estimate adjusted hazard ratios (aHR) with 95% confidence intervals (CIs), comparing outcomes (SARS-CoV-2 infection, and COVID-19 hospitalization and hospital death) in the booster-dose and 2-dose groups. Adjusted rVE (%) was calculated as (1-aHR)x100. aHRs and rVEs were also estimated for SARS-CoV-2 infection by subgroups (age, sex, race/ethnicity, history of SARS-CoV-2 infection, pregnancy, chronic diseases), and for SARS-CoV-2 infection and severe COVID-19 disease by month of follow-up. RESULTS: The study included 431,328 booster-dose vaccinated adults matched to 431,328 2-dose vaccinated adults. rVE was 61.3% (95%CI: 60.5-62.2%) against SARS-CoV-2 infection, 89.0% (86.2-91.2%) against COVID-19 hospitalization, and 96.0% (68.0-99.5%) against COVID-19 hospital death. rVE against SARS-CoV-2 infection ranged from 55.6% to 66.7% across all subgroups. rVE against SARS-CoV-2 infection decreased from 67.1% (0-<1 month of follow-up) to 30.5% (2-<3 months). For COVID-19 hospitalization, rVE decreased from 91.2% (0-<1 month) to 78.7% (2-<3 months). CONCLUSIONS: Among immunocompetent adults, the mRNA-1273 booster conferred additional protection against SARS-CoV-2 infection and severe COVID-19 disease compared to the 2-dose mRNA-1273 primary series during periods of Delta and Omicron predominance.

4.
J Infect Dis ; 2022 Jul 26.
Article in English | MEDLINE | ID: covidwho-2227055
5.
Nat Commun ; 14(1): 189, 2023 01 12.
Article in English | MEDLINE | ID: covidwho-2185842

ABSTRACT

Studies have reported reduced natural SARS-CoV-2 infection- and vaccine-induced neutralization against omicron BA.4/BA.5 compared with earlier omicron subvariants. This test-negative case-control study evaluates mRNA-1273 vaccine effectiveness (VE) against infection and hospitalization with omicron subvariants. The study includes 30,809 SARS-CoV-2 positive and 92,427 SARS-CoV-2 negative individuals aged ≥18 years tested during 1/1/2022-6/30/2022. While 3-dose VE against BA.1 infection is high and wanes slowly, VE against BA.2, BA.2.12.1, BA.4, and BA.5 infection is initially moderate to high (61.0%-90.6% 14-30 days post third dose) and wanes rapidly. The 4-dose VE against infection with BA.2, BA.2.12.1, and BA.4 ranges between 64.3%-75.7%, and is low (30.8%) against BA.5 14-30 days post fourth dose, disappearing beyond 90 days for all subvariants. The 3-dose VE against hospitalization for BA.1, BA.2, and BA.4/BA.5 is 97.5%, 82.0%, and 72.4%, respectively; 4-dose VE against hospitalization for BA.4/BA.5 is 88.5%. Evaluation of the updated bivalent booster is warranted.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adolescent , Adult , SARS-CoV-2/genetics , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , Case-Control Studies , Vaccination
6.
Vaccine ; 41(3): 844-854, 2023 01 16.
Article in English | MEDLINE | ID: covidwho-2165924

ABSTRACT

BACKGROUND: The safety of COVID-19 vaccines plays an important role in addressing vaccine hesitancy. We conducted a large cohort study to evaluate the risk of non-COVID-19 mortality after COVID-19 vaccination while adjusting for confounders including individual-level demographics, clinical risk factors, health care utilization, and community-level socioeconomic risk factors. METHODS: The retrospective cohort study consisted of members from seven Vaccine Safety Datalink sites from December 14, 2020 through August 31, 2021. We conducted three separate analyses for each of the three COVID-19 vaccines used in the US. Crude non-COVID-19 mortality rates were reported by vaccine type, age, sex, and race/ethnicity. The counting process model for survival analyses was used to analyze non-COVID-19 mortality where a new observation period began when the vaccination status changed upon receipt of the first dose and the second dose. We used calendar time as the basic time scale in survival analyses to implicitly adjust for season and other temporal trend factors. A propensity score approach was used to adjust for the potential imbalance in confounders between the vaccinated and comparison groups. RESULTS: For each vaccine type and across age, sex, and race/ethnicity groups, crude non-COVID-19 mortality rates among COVID-19 vaccinees were lower than those among comparators. After adjusting for confounders with the propensity score approach, the adjusted hazard ratios (aHRs) were 0.46 (95% confidence interval [CI], 0.44-0.49) after dose 1 and 0.48 (95% CI, 0.46-0.50) after dose 2 of the BNT162b2 vaccine, 0.41 (95% CI, 0.39-0.44) after dose 1 and 0.38 (95% CI, 0.37-0.40) after dose 2 of the mRNA-1273 vaccine, and 0.55 (95% CI, 0.51-0.59) after receipt of Ad26.COV2.S. CONCLUSION: While residual confounding bias remained after adjusting for several individual-level and community-level risk factors, no increased risk was found for non-COVID-19 mortality among recipients of three COVID-19 vaccines used in the US.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , BNT162 Vaccine , Cohort Studies , Retrospective Studies , COVID-19/prevention & control , Vaccination/adverse effects
7.
JAMA Netw Open ; 5(8): e2225657, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1990377

ABSTRACT

Importance: After SARS-CoV-2 infection, many patients present with persistent symptoms for at least 6 months, collectively termed post-COVID conditions (PCC). However, the impact of PCC on health care utilization has not been well described. Objectives: To estimate COVID-19-associated excess health care utilization following acute SARS-CoV-2 infection and describe utilization for select PCCs among patients who had positive SARS-CoV-2 test results (including reverse transcription-polymerase chain reaction and antigen tests) compared with control patients whose results were negative. Design, Setting, and Participants: This matched retrospective cohort study included patients of all ages from 8 large integrated health care systems across the United States who completed a SARS-CoV-2 diagnostic test during March 1 to November 1, 2020. Patients were matched on age, sex, race and ethnicity, site, and date of SARS-CoV-2 test and were followed-up for 6 months. Data were analyzed from March 18, 2021, to June 8, 2022. Exposure: SARS-CoV-2 infection. Main Outcomes and Measures: Ratios of rate ratios (RRRs) for COVID-19-associated health care utilization were calculated with a difference-in-difference analysis using Poisson regression models. RRRs were estimated overall, by health care setting, by select population characteristics, and by 44 PCCs. COVID-19-associated excess health care utilization was estimated by health care setting. Results: The final matched cohort included 127 859 patients with test results positive for SARS-CoV-2 and 127 859 patients with test results negative for SARS-CoV-2. The mean (SD) age of the study population was 41.2 (18.6) years, 68 696 patients in each group (53.7%) were female, and each group included 66 211 Hispanic patients (51.8%), 9122 non-Hispanic Asian patients (7.1%), 7983 non-Hispanic Black patients (6.2%), and 34 326 non-Hispanic White patients (26.9%). Overall, SARS-CoV-2 infection was associated with a 4% increase in health care utilization over 6 months (RRR, 1.04 [95% CI, 1.03-1.05]), predominantly for virtual encounters (RRR, 1.14 [95% CI, 1.12-1.16]), followed by emergency department visits (RRR, 1.08 [95% CI, 1.04-1.12]). COVID-19-associated utilization for 18 PCCs remained elevated 6 months from the acute stage of infection, with the largest increase in COVID-19-associated utilization observed for infectious disease sequelae (RRR, 86.00 [95% CI, 5.07-1458.33]), COVID-19 (RRR, 19.47 [95% CI, 10.47-36.22]), alopecia (RRR, 2.52 [95% CI, 2.17-2.92]), bronchitis (RRR, 1.85 [95% CI, 1.62-2.12]), pulmonary embolism or deep vein thrombosis (RRR, 1.74 [95% CI, 1.36-2.23]), and dyspnea (RRR, 1.73 [95% CI, 1.61-1.86]). In total, COVID-19-associated excess health care utilization amounted to an estimated 27 217 additional medical encounters over 6 months (212.9 [95% CI, 146.5-278.4] visits per 1000 patients). Conclusions and Relevance: This cohort study documented an excess health care burden of PCC in the 6 months after the acute stage of infection. As health care systems evolve during a highly dynamic and ongoing global pandemic, these data provide valuable evidence to inform long-term strategic resource allocation for patients previously infected with SARS-CoV-2.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , Cohort Studies , Female , Humans , Infant , Male , Patient Acceptance of Health Care , Retrospective Studies , SARS-CoV-2 , United States/epidemiology
8.
PLoS One ; 17(4): e0267824, 2022.
Article in English | MEDLINE | ID: covidwho-1817507

ABSTRACT

BACKGROUND: We conducted a prospective cohort study at Kaiser Permanente Southern California to study the vaccine effectiveness (VE) of mRNA-1273 over time and during the emergence of the Delta variant. METHODS: The cohort for this planned interim analysis consisted of individuals aged ≥18 years receiving 2 doses of mRNA-1273 through June 2021, matched 1:1 to randomly selected unvaccinated individuals by age, sex, and race/ethnicity, with follow-up through September 2021. Outcomes were SARS-CoV-2 infection, and COVID-19 hospitalization and hospital death. Cox proportional hazards models were used to estimate adjusted hazard ratios (aHR) with 95% confidence intervals (CIs) comparing outcomes in the vaccinated and unvaccinated groups. Adjusted VE (%) was calculated as (1-aHR)x100. HRs and VEs were also estimated for SARS-CoV-2 infection by age, sex, race/ethnicity, and during the Delta period (June-September 2021). VE against SARS-CoV-2 infection and COVID-19 hospitalization was estimated at 0-<2, 2-<4, 4-<6, and 6-<8 months post-vaccination. RESULTS: 927,004 recipients of 2 doses of mRNA-1273 were matched to 927,004 unvaccinated individuals. VE (95% CI) was 82.8% (82.2-83.3%) against SARS-CoV-2 infection, 96.1% (95.5-96.6%) against COVID-19 hospitalization, and 97.2% (94.8-98.4%) against COVID-19 hospital death. VE against SARS-CoV-2 infection was similar by age, sex, and race/ethnicity, and was 86.5% (84.8-88.0%) during the Delta period. VE against SARS-CoV-2 infection decreased from 88.0% at 0-<2 months to 75.5% at 6-<8 months. CONCLUSIONS: These interim results provide continued evidence for protection of 2 doses of mRNA-1273 against SARS-CoV-2 infection over 8 months post-vaccination and during the Delta period, and against COVID-19 hospitalization and hospital death.


Subject(s)
COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Cohort Studies , Humans , Prospective Studies , SARS-CoV-2/genetics
10.
Vaccine ; 40(23): 3150-3158, 2022 05 20.
Article in English | MEDLINE | ID: covidwho-1796041

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused an abrupt drop in in-person health care (inpatient, Emergency Department, outpatient) and an increase in telehealth care, which poses challenges in vaccine safety studies that identify outcomes from in-person encounters. We examined the changes in incidence rates of selected encounter-based outcomes during the COVID-19 pandemic. METHODS: We assembled a cohort of members from 8 Vaccine Safety Datalink sites from January 1, 2017 through December 31, 2020. Using ICD-10 diagnosis codes or laboratory criteria, we identified 21 incident outcomes in traditional in-person settings and all settings. We defined 4 periods in 2020: January-February (pre-pandemic), April-June (early pandemic), July-September (middle pandemic), and October-December (late pandemic). We defined four corresponding periods in each year during 2017-2019. We calculated incidence rates, conducted difference in difference (DiD) analyses, and reported ratios of incidence rate ratios (RRR) to examine changes in rates from pre-pandemic to early, middle, and late pandemic in 2020, after adjusting for changes across similar periods in 2017-2019. RESULTS: Among > 10 million members, regardless of setting and after adjusting for changes during 2017-2019, we found that incidence rates of acute disseminated encephalomyelitis, encephalitis/myelitis/encephalomyelitis/meningoencephalitis, and thrombotic thrombocytopenic purpura did not significantly change from the pre-pandemic to early, middle or late pandemic periods (p-values ≥ 0.05). Incidence rates decreased from the pre-pandemic to early pandemic period during 2020 for acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, convulsions/seizures, Guillain-Barré syndrome, immune thrombocytopenia (ITP), narcolepsy/cataplexy, hemorrhagic stroke, ischemic stroke, and venous thromboembolism (p-values < 0.05). Incidence rates of Bell's palsy, ITP, and narcolepsy/cataplexy were higher in all settings than in traditional in-person settings during the three pandemic periods (p-values < 0.05). CONCLUSION: Rates of some clinical outcomes during the pandemic changed and should not be used as historical background rates in vaccine safety studies. Inclusion of telehealth visits should be considered for vaccine studies involving Bell's palsy, ITP, and narcolepsy/cataplexy.


Subject(s)
Bell Palsy , COVID-19 , Cataplexy , Narcolepsy , Thrombocytopenia , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Cataplexy/complications , Cataplexy/epidemiology , Humans , Incidence , Pandemics/prevention & control
11.
J Infect Dis ; 225(11): 1915-1922, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1708333

ABSTRACT

BACKGROUND: Some vaccines elicit nonspecific immune responses that may protect against heterologous infections. We evaluated the association between recombinant adjuvanted zoster vaccine (RZV) and coronavirus disease 2019 (COVID-19) outcomes at Kaiser Permanente Southern California. METHODS: In a cohort design, adults aged ≥50 years who received ≥1 RZV dose before 1 March 2020 were matched 1:2 to unvaccinated individuals and followed until 31 December 2020. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for COVID-19 outcomes were estimated using Cox proportional hazards regression. In a test-negative design, cases had a positive severe acute respiratory syndrome coronavirus 2 test and controls had only negative tests, during 1 March-31 December 2020. Adjusted odds ratios (aORs) and 95% CIs for RZV receipt were estimated using logistic regression. RESULTS: In the cohort design, 149 244 RZV recipients were matched to 298 488 unvaccinated individuals. The aHRs for COVID-19 diagnosis and hospitalization were 0.84 (95% CI, .81-.87) and 0.68 (95% CI, .64-.74), respectively. In the test-negative design, 8.4% of 75 726 test-positive cases and 13.1% of 340 898 test-negative controls had received ≥1 RZV dose (aOR, 0.84 [95% CI, .81-.86]). CONCLUSIONS: RZV vaccination was associated with a 16% lower risk of COVID-19 diagnosis and 32% lower risk of hospitalization. Further study of vaccine-induced nonspecific immunity for potential attenuation of future pandemics is warranted.


Subject(s)
COVID-19 , Herpes Zoster Vaccine , Herpes Zoster , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Aged , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Testing , Herpes Zoster/diagnosis , Herpes Zoster/epidemiology , Herpes Zoster/prevention & control , Hospitalization , Humans , Vaccines, Synthetic
12.
Nat Med ; 28(5): 1063-1071, 2022 05.
Article in English | MEDLINE | ID: covidwho-1700263

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant is highly transmissible with potential immune escape. We conducted a test-negative case-control study to evaluate mRNA-1273 vaccine effectiveness (VE) against infection and hospitalization with Omicron or Delta. The large, diverse study population included 26,683 SARS-CoV-2 test-positive cases with variants determined by S gene target failure status (16% Delta and 84% Omicron). The two-dose VE against Omicron infection at 14-90 days was 44.0% (95% confidence interval, 35.1-51.6%) but declined quickly. The three-dose VE was 93.7% (92.2-94.9%) and 86.0% (78.1-91.1%) against Delta infection and 71.6% (69.7-73.4%) and 47.4% (40.5-53.5%) against Omicron infection at 14-60 days and >60 days, respectively. The three-dose VE was 29.4% (0.3-50.0%) against Omicron infection in immunocompromised individuals. The three-dose VE against hospitalization with Delta or Omicron was >99% across the entire study population. Our findings demonstrate high, durable three-dose VE against Delta infection but lower effectiveness against Omicron infection, particularly among immunocompromised people. However, three-dose VE of mRNA-1273 was high against hospitalization with Delta and Omicron variants.


Subject(s)
COVID-19 , Hepatitis D , 2019-nCoV Vaccine mRNA-1273 , COVID-19 Vaccines , Case-Control Studies , Humans , SARS-CoV-2/genetics
13.
Lancet Reg Health Am ; 6: 100134, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1670848

ABSTRACT

BACKGROUND: Phase 3 trials found mRNA-1273 was highly effective in preventing COVID-19. We conducted a prospective cohort study at Kaiser Permanente Southern California (KPSC) to determine the real-world vaccine effectiveness (VE) of mRNA-1273 in preventing COVID-19 infection and severe disease. METHODS: For this planned interim analysis, individuals aged ≥18 years receiving 2 doses of mRNA-1273 ≥24 days apart (18/12/2020-31/03/2021) were 1:1 matched to randomly selected unvaccinated individuals by age, sex, and race/ethnicity, with follow-up through 30/06/2021. Outcomes were COVID-19 infection (SARS-CoV-2 positive molecular test or COVID-19 diagnosis code) or severe disease (COVID-19 hospitalization and COVID-19 hospital death). Adjusted hazard ratios (aHR) and confidence intervals (CI) for COVID-19 outcomes comparing vaccinated and unvaccinated individuals were estimated by Cox proportional hazards models accounting for multiple comparisons. Adjusted VE was calculated as (1-aHR)x100. Whole genome sequencing was performed on SARS-CoV-2 positive specimens from the KPSC population. FINDINGS: This analysis included 352,878 recipients of 2 doses of mRNA-1273 matched to 352,878 unvaccinated individuals. VE (99·3% CI) against COVID-19 infection was 87·4% (84·8-89·6%). VE against COVID-19 hospitalization and hospital death was 95·8% (90·7-98·1%) and 97·9% (66·9-99·9%), respectively. VE was higher against symptomatic (88·3% [98·3% CI: 86·1-90·2%]) than asymptomatic COVID-19 (72·7% [53·4-84·0%]), but was generally similar across age, sex, and racial/ethnic subgroups. VE among individuals with history of COVID-19 ranged from 8·2-33·6%. The most prevalent variants were Alpha (41·6%), Epsilon (17·5%), Delta (11·5%), and Gamma (9·1%), with Delta increasing to 54·0% of variants by June 2021. INTERPRETATION: These interim results provide reassuring evidence of the VE of 2 doses of mRNA-1273 across age, sex, and racial/ethnic subgroups, and against asymptomatic and symptomatic COVID-19, and severe COVID-19 outcomes. Among individuals with history of COVID-19, mRNA-1273 vaccination may offer added protection beyond immunity acquired from prior infection. Longer follow-up is needed to fully evaluate VE of mRNA-1273 against emerging SARS-CoV-2 variants. FUNDING: Moderna Inc.

14.
BMJ ; 375: e068848, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1583187

ABSTRACT

OBJECTIVES: To evaluate the effectiveness of the mRNA-1273 vaccine against SARS-CoV-2 variants and assess its effectiveness against the delta variant by time since vaccination. DESIGN: Test negative case-control study. SETTING: Kaiser Permanente Southern California (KPSC), an integrated healthcare system. PARTICIPANTS: Adult KPSC members with a SARS-CoV-2 positive test sent for whole genome sequencing or a negative test from 1 March 2021 to 27 July 2021. INTERVENTIONS: Two dose or one dose vaccination with mRNA-1273 (Moderna covid-19 vaccine) ≥14 days before specimen collection versus no covid-19 vaccination. MAIN OUTCOME MEASURES: Outcomes included infection with SARS-CoV-2 and hospital admission with covid-19. In pre-specified analyses for each variant type, test positive cases were matched 1:5 to test negative controls on age, sex, race/ethnicity, and specimen collection date. Conditional logistic regression was used to compare odds of vaccination among cases versus controls, with adjustment for confounders. Vaccine effectiveness was calculated as (1-odds ratio)×100%. RESULTS: The study included 8153 cases and their matched controls. Two dose vaccine effectiveness was 86.7% (95% confidence interval 84.3% to 88.7%) against infection with the delta variant, 98.4% (96.9% to 99.1%) against alpha, 90.4% (73.9% to 96.5%) against mu, 96-98% against other identified variants, and 79.9% (76.9% to 82.5%) against unidentified variants (that is, specimens that failed sequencing). Vaccine effectiveness against hospital admission with the delta variant was 97.5% (92.7% to 99.2%). Vaccine effectiveness against infection with the delta variant declined from 94.1% (90.5% to 96.3%) 14-60 days after vaccination to 80.0% (70.2% to 86.6%) 151-180 days after vaccination. Waning was less pronounced for non-delta variants. Vaccine effectiveness against delta infection was lower among people aged ≥65 years (75.2%, 59.6% to 84.8%) than those aged 18-64 years (87.9%, 85.5% to 89.9%). One dose vaccine effectiveness was 77.0% (60.7% to 86.5%) against infection with delta. CONCLUSIONS: Two doses of mRNA-1273 were highly effective against all SARS-CoV-2 variants, especially against hospital admission with covid-19. However, vaccine effectiveness against infection with the delta variant moderately declined with increasing time since vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , COVID-19/prevention & control , SARS-CoV-2 , Vaccine Efficacy , 2019-nCoV Vaccine mRNA-1273/administration & dosage , Adolescent , Adult , Aged , COVID-19/mortality , COVID-19/virology , California , Case-Control Studies , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Vaccination/statistics & numerical data , Young Adult
15.
Vaccine ; 40(5): 752-756, 2022 01 31.
Article in English | MEDLINE | ID: covidwho-1586268

ABSTRACT

BACKGROUND: The Vaccine Safety Datalink (VSD) uses vaccination data from electronic health records (EHR) at eight integrated health systems to monitor vaccine safety. Accurate capture of data from vaccines administered outside of the health system is critical for vaccine safety research, especially for COVID-19 vaccines, where many are administered in non-traditional settings. However, timely access and inclusion of data from Immunization Information Systems (IIS) into VSD safety assessments is not well understood. METHODS: We surveyed the eight data-contributing VSD sites to assess: 1) status of sending data to IIS; 2) status of receiving data from IIS; and 3) integration of IIS data into the site EHR. Sites reported separately for COVID-19 vaccination to capture any differences in capacity to receive and integrate data on COVID-19 vaccines versus other vaccines. RESULTS: All VSD sites send data to and receive data from their state IIS. All eight sites (100%) routinely integrate IIS data for COVID-19 vaccines into VSD research studies. Six sites (75%) also routinely integrate all other vaccination data; two sites integrate data from IIS following a reconciliation process, which can result in delays to integration into VSD datasets. CONCLUSIONS: COVID-19 vaccines are being administered in a variety of non-traditional settings, where IIS are commonly used as centralized reporting systems. All eight VSD sites receive and integrate COVID-19 vaccine data from IIS, which positions the VSD well for conducting quality assessments of vaccine safety. Efforts to improve the timely receipt of all vaccination data will improve capacity to conduct vaccine safety assessments within the VSD.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Humans , Immunization , Information Systems , SARS-CoV-2 , United States , Vaccination/adverse effects , Vaccines/adverse effects
16.
MMWR Morb Mortal Wkly Rep ; 70(43): 1520-1524, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1498054

ABSTRACT

By September 21, 2021, an estimated 182 million persons in the United States were fully vaccinated against COVID-19.* Clinical trials indicate that Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273), and Janssen (Johnson & Johnson; Ad.26.COV2.S) vaccines are effective and generally well tolerated (1-3). However, daily vaccination rates have declined approximately 78% since April 13, 2021†; vaccine safety concerns have contributed to vaccine hesitancy (4). A cohort study of 19,625 nursing home residents found that those who received an mRNA vaccine (Pfizer-BioNTech or Moderna) had lower all-cause mortality than did unvaccinated residents (5), but no studies comparing mortality rates within the general population of vaccinated and unvaccinated persons have been conducted. To assess mortality not associated with COVID-19 (non-COVID-19 mortality) after COVID-19 vaccination in a general population setting, a cohort study was conducted during December 2020-July 2021 among approximately 11 million persons enrolled in seven Vaccine Safety Datalink (VSD) sites.§ After standardizing mortality rates by age and sex, this study found that COVID-19 vaccine recipients had lower non-COVID-19 mortality than did unvaccinated persons. After adjusting for demographic characteristics and VSD site, this study found that adjusted relative risk (aRR) of non-COVID-19 mortality for the Pfizer-BioNTech vaccine was 0.41 (95% confidence interval [CI] = 0.38-0.44) after dose 1 and 0.34 (95% CI = 0.33-0.36) after dose 2. The aRRs of non-COVID-19 mortality for the Moderna vaccine were 0.34 (95% CI = 0.32-0.37) after dose 1 and 0.31 (95% CI = 0.30-0.33) after dose 2. The aRR after receipt of the Janssen vaccine was 0.54 (95% CI = 0.49-0.59). There is no increased risk for mortality among COVID-19 vaccine recipients. This finding reinforces the safety profile of currently approved COVID-19 vaccines in the United States.


Subject(s)
COVID-19 Vaccines/administration & dosage , Mortality/trends , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Child , Delivery of Health Care, Integrated , Female , Humans , Male , Middle Aged , Risk , United States/epidemiology , Young Adult
17.
J Med Internet Res ; 23(9): e29959, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1381351

ABSTRACT

BACKGROUND: Dramatic decreases in outpatient visits and sudden increases in telehealth visits were observed during the COVID-19 pandemic, but it was unclear whether these changes differed by patient demographics and socioeconomic status. OBJECTIVE: This study aimed to assess the impact of the pandemic on in-person outpatient and telehealth visits (telephone and video) by demographic characteristics and household income in a diverse population. METHODS: We calculated weekly rates of outpatient and telehealth visits by age, sex, race/ethnicity, and neighborhood-level median household income among members of Kaiser Permanente Southern California (KPSC) from January 5, 2020, to October 31, 2020, and the corresponding period in 2019. We estimated the percentage change in visit rates during the early pandemic period (March 22 to April 25, 2020) and the late pandemic period (October 4 to October 31, 2020) from the prepandemic period (January 5 to March 7, 2020) in Poisson regression models for each subgroup while adjusting for seasonality using 2019 data. We examined if the changes in visit rates differed by subgroups statistically by comparing their 95% CIs. RESULTS: Among 4.56 million KPSC members enrolled in January 2020, 15.0% (n=682,947) were ≥65 years old, 51.5% (n=2,345,020) were female, 39.4% (n=1,795,994) were Hispanic, and 7.7% (n=350,721) lived in an area of median household income

Subject(s)
COVID-19 , Telemedicine , Aged , Delivery of Health Care , Female , Humans , Outpatients , Pandemics , Retrospective Studies , SARS-CoV-2
18.
Pediatrics ; 148(1)2021 07.
Article in English | MEDLINE | ID: covidwho-1190194

ABSTRACT

OBJECTIVES: The impact of the coronavirus disease 2019 pandemic on vaccination coverage, critical to preventing vaccine-preventable diseases, has not been assessed during the reopening period. METHODS: Vaccine uptake and vaccination coverage for recommended vaccines and for measles-containing vaccines at milestone ages were assessed in a large cohort of children aged 0 to 18 years in Southern California during January to August 2020 and were compared with those in the same period in 2019. Differences in vaccine uptake and vaccination coverage (recommended vaccines and measles-containing vaccines) in prepandemic (January to March), stay-at-home (April to May), and reopening (June to August) periods in 2020 and 2019 were compared. RESULTS: Total and measles-containing vaccine uptake declined markedly in all children during the pandemic period in 2020 compared with 2019, but recovered in children aged 0 to 23 months. Among children aged 2 to 18 years, measles-containing vaccine uptake recovered, but total vaccine uptake remained lower. Vaccination coverage (recommended and measles-containing vaccines) declined and remained reduced among most milestone age cohorts ≤24 months during the pandemic period, whereas recommended vaccination coverage in older children decreased during the reopening period in 2020 compared with 2019. CONCLUSIONS: Pediatric vaccine uptake decreased dramatically during the pandemic, resulting in decreased vaccination coverage that persisted or worsened among several age cohorts during the reopening period. Additional strategies, including immunization tracking, reminders, and recall for needed vaccinations, particularly during virtual visits, will be required to increase vaccine uptake and vaccination coverage and reduce the risk of outbreaks of vaccine-preventable diseases.


Subject(s)
COVID-19 , Measles Vaccine , Vaccination Coverage/statistics & numerical data , Vaccines , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL